
Lessons Learned
Implications

in Creating Spacecraft Computer Systems:
for Using Adatm for the Space Station

bY

James E. Tomayko

Senior Computer Scientist
Software Engineering Institute

Camegie-Melbn University

Pittsburgh, PA 1521 3.

Abstract

Twenty-five years of spacecraft onboard computer development have resulted in a better understanding
of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight
flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Viking, Voyager, Galileo) and three research
programs (Digital Fly-By-wire, STAR and the Unified Data System) are useful in projecting the computer
hardware configuration of the Space Station and the ways in which the Ada programming language will
enhance the development of the necessary software. This paper reviews the evolution of hardware
technology, fault protection methods, and software architectures used in space flight in order to provide
insight into the pending development of such items for the Space Station.

1. Introduction

During the 25 years since the first flights of manned and unmanned spacecraft carrying onboard
computers, the tasks assigned to the machines have grown in complexity and pervasiveness until now it
is impossible to consider designing a spacecraft without including substantial computing power. As with
any mission critical component, the reliability of computers has to be ensured. NASA's efforts to use
computers onboard spacecraft resulted in the development of various methods of fault tolerance.
Development of computer systems for unmanned and manned spacecraft have largely followed separate
tracks. Systems onboard manned spacecraft used increasing numbers of redundant processors as the
primary method of protection. Those on unmanned spacecraft, though redundant, were more innovative
in terms of distributing tasks and processing power. The Space Station project provides an opportunity to
merge the two tracks, taking from the manned programs experience with using high level languages,

 he author io on ieave h ~ m he wichita SWB U n h i t y , ~ l i ~ h i t a an.
The views and conduskns In Ihb doarment are hose of Ihe auhw and should not be interpreted as representing offiaal policies.

either expressed or Implied, of the Sofhnam Engineering Institute, CamegieMelbn Unimity, the Deparbnent of Defense, or the
US. Government

Thii work was partiallv spawmd by Ihe Depahent of Defeme,

Ada is a regielered trpdemark of the Department of Defense.

Copyaht (c) 1986 by James E. lomayko

most nrsearch done under NASA centrad NASW-3714.

E.2.2.1

software synchronization, and hrge-scale software devebpment, and from the unmanned programs use
of distributed systems and microprocessors. This synthesis creates a system that lends itself to the use of
Ada as the onboard software devebpment language if the problems of implementing the language on
distributed systems can be sotved.

2. A Taxonomy of Spacecraft Computer Systems

A review of previous onboard computer systems is in otder to provide a basis for discussing a
computer architecture for the Space Station. Since all previous systems have used redundancy in some
form for fautt tolerance, a taxonomy can be established by considering the nature of the various
redundancy schemes. Four types of systems can be identified: simplex, multiplex, functional distribution
with full redundancy, and functional distribution with virtual redundancy. Both simplex and mttiplex
schemes have examples in both the manned and unmanned programs, while the latter pair of types
presently have only unmanned spacecraft systems as members.

21. Simplex Systems

Simplex onboard computer systems are identified by the absence of redundancy. They are also
characterized by being part of a single subsystem of the spacecraft, specifically the guidance and
navigation subsystem on manned spacecraft and the commanding subsystem on unmanned spacecraft.
If the simplex computer system failed, its tasks would be suspended when possible, or taken over by a
backup with reduced functionality. Crew and spacecraft safety would be maintained, but mission
objectives would be compromised. Three simplex systems were developed in the 1960s: the
programmable sequencer onboard the later Mariner missions, the Gemini Digiial Computer and the
Apollo Guidance Computer.

2.1 .l . Marinefs Programmable Sequencer

Prior to the Mariner Mars 1969 flyby missions, unmanned interplanetary spacecraft camed hardwired
sequencers. Essentially these sequencers monitored a counter that was constantly updated by pulses
from a clock. When an appropriate time interval had elapsed, some spacecraft adiviiy would be initiated.
For example, after the cruise period to a planet, at a time precalculated and put into the sequencer’s
bgk, the spacecraft would orient itself and activate experiments to be done during the encounter with the
planet. This meant that very accurate preflight navigation calculations had to be made, and that the
sequences could not be c h a m after liftoff.

Mariner Man 1969 was to be a double flyby of the Red Planet. tf the spacecraft could be fitted with
programmable sequencers, then the tarpeting and camera aiming of the second spacecraft could be
chanoed to follow up on d i e r i e s made by the first flyby. For instance, if a particularly interesting
terrain feature was found, the second spacecraft could have fts encounter sequence reprogrammed from
the earth to obtain more imaging in that area. Wdh a t ied sequencer this would have been impossible.
Accordingly, a programmable sequencer with 128 words of memory was included. Later expanded to a
512 word memory, this machine controlled two Mars flyby missions, two orbiters (1971), and the Venus
and Mercury flyby mWon in 1973. The latter demonstrated the flexibility of the machine because the
mission was so complex one software bad was too small to do the pb. Therefore, a seriis of complete

E.2.2.2

software bads were prepared and sent up to the spacecraft as the mission progressed [Hooke 19731.
Subsequently, in flight reprogramming became a planned and common feature of interplanetary missions,
greatly reducing memory requirements and increasing flexibility.

Backup to the programmable sequencer was the same hardwired sequencer used in the early Mariner
missions. If the programmable sequencer had failed, then the mission could continue, but only with
preprogrammed sequences. Switching to the backup resulted in reduced functions. A similar situation
existed in the two sirnplex manned spacecraft systems.

2.1.2. The Gemini Digital Computer

The Gemini program was more than a tW0-rf-m folkwon to the Mercury spacecraft. It was a test bed
for guidance and navigation techniques considered essential for the Apollo lunar landing program. Two of
the more diffiilt of these were rendezvous and computerantrolled reentry. A small onboard computer
customdesigned and programmed by IBM Corporation provided real-time calculations of maneuvers for
the astronauts. During a rendezvous operation, required vekcity changes would be displayed and the
astronauts would fire thrusters and maintain attitude during powered maneuvers. The spacecraft had
lifting capability suffiiient to adjust the landing point within a rectangular footprint 500 miles long and 40
miles wide. The computer was programmed to target within the footprint. Each major function was
contained in separate single software modules. By using a rotary switch and the start button, a program
could be selected. When the machine was not needed, such as during coasting in orbit, it could be shut
Off.

If the computer failed, its tasks would either be abandoned or done by less effective means. A
rendezvous could be canceled. Computer controlled reentry could be replaced by pilot control, such as on
the Mercury missions. Either way, crew safety was maintained, but mission objectives were not
accamplis hed .

2.1 3. Apollo’r Simplex Systems

NASA contracted with the Instrumentation Laboratory (now the C. Stark Draper Laboratory) of the
Massachussetts Institute of Technology for the Apolb guidance system. A computer first built for the
Polaris submarine launched ballistic missile was redesigned as the Apollo GuMance Computer. Software
for the computer functioned as a priority-interrupt system with some cyclic characteristics. Jobs were
scheduled and monitored by an executive program. Code was executed by an interpreter. A typical
software bad consisted of several dozen “programs” which could be activated by the crew. Key mission
phases such as lunar orbi insertion, landing, lunar orbii rendezvous, and entry into the earth’s
atmosphere were computer intensive activities.

The Apolb was a two-part spacecraft: command module and associated propulsion, and the lunar
module. Each module had a computer, with, of cou~se, different applications programs, but the same
interpreter and executive. If the command module’s computer failed, the mission would be aborted and
return to earth would be handled by doing maneuver calculations on the ground and sending instructions
to the crew. If the lunar module’s computer failed, it had an onboard backup. The backup computer was a
small device built by TRW Corporation that could guide the ascent portion of the lunar module to a
rendezvous with the command module. That was its wle function, so a computer failure during lunar
descent would have caused an abort of the landing attempt.

E.2.2.3

The o b v i s shortcoming of simplex systems is that a single computer failure severely damages the
mission. This is apparent even in the systems described here, even though their use was limited to one
subsystem. As NASA entered the 1970s, spacecraft that depended on computers for more than one
function were being designed. On those spacecraft, computer failures would greatly affect crew and
spacecraft safety. The first method of reducing the impact of such failures was the development of
multiplex systems with full redundancy.

22. Multiplex Systems

Three spacecraft designed in the first half of the 1970s used fully redundant computers. The Viking
unmanned Mars orbiters and landers and the Skylab orbiting space station both had duplex systems,
while the Space Shuttle orbiter and its aircraft predecessor had more than two computers. The
introduction of redundancy as a method of fault tolerance necessitated the addiiion of management
software absent from the simplex systems.

2.2.1. Viking and Skylab: Dual Redundancy

The Viking missions to Mars were, in many ways, the most Complex unmanned flights yet attempted. A
two part spacecraft was placed into Martian orbit, whereupon the orbiier portion began a search for a
landing site. When one was chosen, the lander portion descended to the Martian surface. Each part of
the spacecraft functioned for years, the ofbiier mapping the planet and conducting experiments best done
from space, the lander doing chemical and biological analyses of the Martian soil and sending detailed
images of the surface back to earth. Both the orbiter and lander had dual computer systems. Each could
support its part of the mission independently, or could work cooperatively on separate tasks. The orbiter
computers were primarily a replacement for the programmable sequencers carried on Mariners, with the
same command and control functions. The lander computer had to control the descent and later the
operation of the surface station. The Jet Propulsion Laboratory, whiih built the orbiter, designed a special
purpose processor for its spacecraft. The lander, built by Martin-Marietta Corporation, used an existing
Honeywell computer.

Skylab's dual computers were also commercially available, coming from the IBM line of 4Pi processors
that were derived from the 360 architecture. The Skylab computers were related to their manned
spacecraft predecessors in that they were part of a single subsystem, in this case attitude control. This
space station used a complex set of control moment gyros for stabilization and attitude maintenance. The
computers were programmed to execute scheduled tasks cyclically, including a set of self-tests. Each
cycle the primary computer would deposit a Wit status word to a special register in a common section
of the system. Thii register and its associated logic were constructed of triple modular redundant circuits
for r e l i i l i . If the secondary computer detected that the primary was failing its self-tests, it would take
the status word from the common section before the failing computer could corrupt it, and shut down its
partner. Such a failure never occurred during the lifetime of the Skylab, but a manual switchover was
done to prove that the system was reliable no matter w h i i machine was designated primary.

Even though the Viking and Skylab computers were fully redundant and provided a high degree of
reliability, a dual system is insufficient for manned operations. If bne half of a dual system detects a failure
in the other half, it follows that the failing computer might well detect a failure in the good computer, and
will try to shut it down. Also, there is a possibility that the computer detecting the failure is actually the one

E.2.2.4

failing, and that the detection k incorrect. An obvious solution to this dilemma is to add more computers,
each running identical software-the solution chosen for the Shuttle.

2.29. Redundancy for Digital Fly-by-Wim AetospacraR

NASA's Space Shuttle is different from all the other spacecraft so far discussed in that the onboard
computers have tasks outside of a single system or small set of systems. The Shuttle computers control a
large number of spacecraft functions, including such mundane items as the opening and closing of the
cargo bay doors. Most importantly, the Shuttle has a digital fly-by-wire control system. This means that
where mechanical linkages exist in conventional aircraft control systems, the Shuttle has electrical and
eledronic connections between the controlling devices, the computers, and the control surfaces. When an
astronaut moves the hand controller in the Shuttle, signals are generated and transmitted to the
computers, which then generate signals to the actuators at the control surfaces. Therefore, a software or
hardware failure makes the control system inoperable, and even a short loss of control in a critical
mission phase wouM be disastrous. Since early research showed that the most likely source of failure in
an avionics system would be the computers, NASA chose to increase the levels of redundancy of the
primary computer system to provide sufficient protection.

At first, the level of protection was what has been termed "fail-operationaVfail-operationaWail-safe." If
one computer fails, then the spacecraft is still operational, if a second fails, it is operational, but should
return to earth because it has reached fail-safe level, at which another failure would mean seriius danger.
The fail-safe level escalated to three computers to avoid the standoff situation. The sum of ths is that five
computers were necessary and NASA accordingly acquired five IBM AP-101 machines for each orbiter.
Later adjustments to the design reduced the level of redundancy to failoperational/fail-safe, but the fifth
computer was kept on the spacecraft as a backup f l iht system that could be activated by the crew in
case of a catastrophic failure of the primary. The backup can only control the ascent and descent of the
orbier, and by itself can not complete a mission.

Of central concern to the Shuttle designers was the development of a redundancy management
scheme. Fortunately, NASA was already engaged in a research program that could shed direct light on
the subject. The Dryden Flight Research Center at Edwards, California, had been conducting a digital
fly-by-wire test program using a modified VougM F-8C aircraft. A single Apollo Guidance Computer was
installed in the aircraft to provide flight control. An electronic analog system acted as a backup, but it
never was needed. Dryden's research team realized that a simplex system would never be acceptable for
routine use, 60 il was exploring a dual computer system when officials at the Johnson Space Center
contacted them about installing three of the same computers to be used in the Shuttle in the F-8 and thus
tryino out methods of integrating multiple machines into an avionics system. Dryden agreed, and three
AP-101s were installed and flown on the F-8. Several single computer failures occurred during flight, none
of which endangered the aircraft.

The primary problem in managing multiple computer systems is failure detection. It was reasoned that
if the software could be compared at regular intewals, then a failing computer would be obvious because
its results would be different from the results of its partners. Comparing checksums consisting of the
components of a number of parameters is a simple way of doing this; however, due to dfferences in the
computer clocks, the machines would quickly reach the point where they were out of step, and anomalies
would show up in the checksums even though the machines had not failed. To overcome this problem,

E.2.2.5

the machines had to be synchronized. Each time the software executes an input operation, output
operation, or changes the module being executed, a three-bl discrete signal is sent on a dedicated bus to
the other computers. The sending computer waits up to four milliseconds for its partners to check in with
an identical signal. If the signals do not agree, of if the time limit expires, the computer which failed to
check in properly is indicated to be failing, and the computer that detects this error goes on. Due to fear of
generic errors, the computers are not capable of shutting each other off, only the crew can do that in
response to the failure signals.

Basically, multiplex systems provide fault tolerance by layers of redundancy. The disadvantages of this
are that entire systems must be replicated at least three times and more reasonably four times to provide
the reliability needed by mission critical systems. In a computationally intensive environment, such as that
on the proposed Space Station, so many processors wouM have to be replicated that the increase in
power consumption and other resources devoted to the computers would be prohibitive. Other forms of
reliability insurance developed for the unmanned flight programs may provide more sensible solutions for
the Space Station.

2.3. Functional Distribution with Full Redundancy

NASA's longest lived interplanetary spacecraft are the two voyagers launched in 1977 and still working
successfully, as proved by the recent flyby of Uranus. The Voyagers carry a functionally distributed set of
three pairs of redundant computers. Probably most of the reason why this computer configuration was
chosen is the structure of the Jet Propulsion Laboratory. Different sections of the Laboratory contribute
different components to a spacecraft. In the case of Voyager, the section that builds the command system
reused the computer developed for the Viking orbiier with an almost identical software structure. The
attitude control system developers used a speeded up version of the command computer and the flight
data system had a newly developed machine. Each of the three groups independently determined that
the inclusion of a computer system was the best way for the specific tasks involved to be accomplished.

One change caused by adopting functional distribution was the need to communicate with other
computers instead of hardwired logic devices. Most intercomputer communication consisted of
commands and signals relating to internal tests. More complex communications were required by the next
level of unmanned spacecraft systems.

2.4. Functional Distribution with Virtual Redundancy

The next major interplanetary spacecraft designed after Voyager was Galileo, a Jupiter atmospheric
probe and orbiter. Galileo cames a dual computer system for attitude control and pointing that uses an
off-the-she! microprocessor, the ATAC-16, and is programmed in a hgh level language, HAUS. Its
command and data system also uses commerically available microprocessors, six RCA 1802s in two
strings of three. This system was derived from research sponsored by the Jet Propulsion Laboratory
concerning reliable computer systems for unmanned spacecraft.

Beginning in the early 1 9 6 0 ~ ~ the Laboratory sponsored the design of a computer called STAR (for Self
Testing and &pair) that consisted of collections of multiple copies of each major component (Avbienis
19681. For instance, memories, inputloutput devices and the like were triplicated. A special piece of

E.2.2.6

hardware called the Test and Repair Processor, or TARP, had five copies. When the computer was
operating, one of each subcomponent and three TARPs were powered up and running. If the TARPs
voted that a component was failed, they activated one of the spares. If the vote had not been unanimous,
the dissident TARP would be shut off and another activated. In this way no more than the minimum
number of components would be powered at any given time. The weakness of ths scheme is that a
failure of the switches used to turn off bad components and turn on ones would negate the fault
tolerance. However, the concept of a single computer with virtual redundancy wwived to the next round
of research.

Research initiated after STAR led to the construction of the Unified Data System in the early to mid
1970s [Rennels 19781. Here the emphasis was on several processors working cooperatively. Certain
processors, called High Level Modules, would communicate only with other processors, called Terminal
Modules. The Terminal Modules would deal with spacecraft systems or the outside world. Conceptually,
by carrying several High Level and a larger number of Terminal Modules, each communicating by means
of multiple busses, and sharing numerous memory modules, the system coukl function with a variety of
combinations of modules, memory, and bus connections. This way a single processor failure would result
in a change of the configuration, but no degradation of performance unless a number of different failures
OCCUKed.

Designers of the Galileo command and data system did not fully adapt the concept, even though they
adapted the terminology. Two 1802s are assigned as High Level Modules, four are Low Level Modules.
Several memories and redundant busses are part of the system. However, it is fundamentally separated
into two redundant strings. Even so, the software is constructed in what are termed ”virtual machines” and
is distributed over the several processors. From the Unified Data System and the actual Galileo software
some hints for a possible Space Station computer architecture can be derived.

3. Computer Architecture for the Space Station

The Space Station will be different from any previous manned spacecraft in tens of its computational
needs. In fact, It will be much cbser to an unmanned spacecraft. This is primarily because the guidance
and navigation tasks on a Space Station are minimal compared to what a spacecraft like the Shuttle
requires for active flight control. However, considerable computational capability in the areas of data
acquisition and analysis, altitude control, lire support, and spacecraft health monitoring will be necessary.
Wfih ths variety of tasks, It is logical to imagine that the final configuration of the computers onboard the
Space Station will be a distributed system, with physical processors embedded in the hardware built to
accomplish each function. Thus the Station’s computer systems will resemble the functional distributions
used on Voyager and Galileo, rather than the centralbed systems used on the Shuttle.- Questions of
redundancy can then be handled at the local level. Some systems such as life support are so critical as
to require fault protection to the same degree as fliiht control, and will require multiple dedicated
processors for redundancy. Other systems can be virtually redundant in that their tasks can be transferred
to another processor in another system in case of a failure. Perhaps a common pool of processors can be
made available to host tasks offbaded from failed machines. In any case, the intent of a hardware

“ A h o h the Shuttle has locep ccmwtem on ?he main engines and on payloads. Ihe Data proceedng System, with its muttipkx
conliguraiion, does ail other mputetional operaiions.

E2.2.7

architecture for the Space Station should be to provide fault tolerance relative to the importance of the
systems, and to avoid carrying large numbers of resource-hungry multiplex systems.

4. Implementing Space Station Onboard Software with Ada

Since Ada has already been designated as the devebpment language for the Space Station, its
strengths and weaknesses in implementing software for its potential computer architecture are of interest.
Ada's strengths in developing this type of system lie in its inherent ability to handle concurrency, both in
terms of data sharing and Synchronization, and in hiding mechanisms of concurrency in the programming
language. Fundamentally, the entire sohare bad for the Station could be created as a set of tasks,
some of which will run individually on separate processors, some of which will share a single processor,
but all of which can be considered as part of a lbrary of related programs. This was impossible in
previous distrikrted systems in which the software for each computer was written separately in different
languages, sometimes in a mix of high level and low level languages, and interconnected with great
difficulty. The chief weakness of Ada at this point in time is not the language itself, but the lack of
implementations of it that make use of its full range of features, particularly those most applicable to the
Space Station.

4.1. Ada Features Most Useful for Distribution and Fault Tolerance

Since the original purpose of designing Ada was to serve the devebpment of large and real time
systems, several features of the language are directly applicable to programming the heterogenous
machines on the Space Station.

4.1 .l. Tasks

Using Ada, programs can be made up of a variety of units, inctuding tasks. A task is a program unit
that runs in parallel to other tasks, and to the main pmgram, which is implicitly also a task. Moreover, it
can run either interleaved with other tasks in one physical processor or as a single process on a machine
in a multicomputer system. Tasks on the Space Station would have varying degrees of interaction. For
instance, a task monitoring spacecraft health would periodically wish to receive signals from processes
throughout the Station in order to make sure everything is still functioning. These messages would be far
less frequent than three computers running identical tasks as part of a mission critical, locally redundant,
synchronized subsystem. Regardless of the level of communication, the information to be exchanged can
be abstracted in the task body, hiding the complexity of the interior of a task from programmers working
on associated tasks.

4.1 9. Rendezvous

Previous parallel ~mputations in spacecraft shared information by message passing or common data
pools. On Voyager, messages are sent between the command computer and attitude control computer as
single units. On the Shuttle, the high level language HAVS provides for the dedaration of common data
shared by several scheduled parallel processes. M a provides for wnunon data using pragmas for
shared information, but the most common form of information exchange on the Station would probably be
message passing, usable for simple data exchange or for synchronization. Message passing is

E.2.2.8

implemented in Ada using the rendezvous, in which a task will be bbcked while attempting to send or
receive a message. When both sender and receiver reach the point in their respective task bodies where
they are ready to do the exchange, a rendezvous occurs, data is transferred, and both tasks continue.
These rendezvous can take place between widely distributed tasks.

4.1.3. Exception8

One Ada feature critical for Space Station systems is the abi l i to gracefully handle predictable errors.
Even though most Space Station subsystems could have short duration failures without endangering the
crew, actively handling the failures as opposed to reacting to existing conditions is almost always
preferable. Exception handlers can be part of each task, and, used creatively, can eliminate complete
shutdowns of subsystems.

4.1.4. Modularity

Since the Space Station is expected to operate over a long period of time, with many changes in its
component modules, the software used on it must be easily modifiable. Ada’s ability to separately compile
tasks that have been added or modified and include them in the existing software bad is a significant
advantage. NASA has made good progress in reusing software in preparing Shuttle flight loads.
Consciousness of reusability can be easily transferred to the Space Station project since the development
language directly supports such techniques through the use of generics.

4.2. An Example: Implementing Shuttle-Like Computer Failure Detection in Ada

As an example of tasks, rendezvous, and exception handling, the Ada code in Figure 1 on the next
page implements the Shuttle computer failure detection and synchronization scheme in a two processor
system.

5. Summary
Ada has many characteristics that support the development of software that implements fault tolerance

schemes developed for previous spacecraft. Also, the ability to run on distributed systems essentially
transparently to programmers working on the Space Station software means that a variety of redundancy
configurations can be used. This, of course, depends on continued research and development concerning
implementing Ma. Although some attempts have been made to implement Ada on several cooperating
processow, the nuances of doing so are still not all understood [Ado 19841. Also, the progress of Ada
development environments, though picking up steam, is still behind original expectations. Adoption of
existing Ada development technobgy by the Space Station project coupled with support of efforts
designed at multiprocessor implementations provides the safest route to completion of Space Station
software in the early 1990s.

E.2.2.9

kgin
8- IO-- (1-06-0: in -TIm-TYPE) do -- thr taok io bloalud at +hi8 atat-t waiting for ma of i t 8 -- f a l l o w t a o b op thh proooooor t o ..LLd w o r d that it h a do- -- M input or M output. wbrn a rrlua Zot 1-a-O rmlvao, thrn -- it wait . for up t o 4 millloeaaada for thr athrr proarosor to -- ahmk in u8- +hi. B d m & 8k-t:

or

md

Figura 1

E.2.2.10

BI bliography

[Ada 1983lAda Programirrg Language, ANSI/MIL-STD-l815A, 22 January 1983.

[Ado 19841 A. Ardo, "Experimental Implementation of an Ada Tasking Run-time System on the
Multiprocessor Computer Cm'", Proceedings of the First Annual Washington Ada Symposium.

[Avizienis 19681 A. Avizienis, "An Expenmental Self-Repairing Computer," NASA-TR-32-1356, Jet
Propulsion Laboratory.

[Gehani 19831 Narain Gehani, Ada, An manced lntroducfion (Prentice Hall).

[Habermann 19831 A. Nico Habermann and Dwayne E. Perry, Ada for Experienced Programmers
(Addison-Wesley).

[Hooke 19761 A. J. Hooke, "In FliiM Utilization of the Mariner 10 Spacecraft Computer," in Journal of
the British interplanetary Sociefy, Vol. 29, April, 1976.

[Rennels 1978) David A. Rennels, "Reconfigurable Modular Computer Networks for Spacecraft On-
board Processing," C o m e r , July, 1978.

Notor on tho Author
James E. Tomayko is a Computer Scientist at the Software Engineering institute, Carnegie-Melbn

University, a federally-funded research and development center. He is on have from a faculty position in
the Computer Science Department of The WEhita State University. Recently Dr. Tomayko completed a
three-year study of NASA's use d computers in space flight operations to be released by the Agency as a
book Articles related to the subject of the present paper have already appeared:

"NASA's Manned Spacecraft Computers,' Ann& of the History of Computing, Volume 7, #1,

0 "Achieving Reliability: The Evolution of Redundancy in American Manned Spacecraft Computers,"

0 "Digital Fly-By-&e: A Case of Bidirectional Technology Transfer,' Amspace Historian, Volume

January 1985, pp. 7-1 8.

&mal of the Bdhh lnrerplanetary Society, Volume 38, #12, December, 1985, pp. 545-553.

33, t i .

Or. Tomayko is a National Lecturer for the Association of Computing Machinery, and has given over 50
talks on manned and unmanned spacecraft computer systems within the last 18 months.

E.2.2.11

